United States Department of Agriculture Natural Resources Conservation Service September 1999 Watershed Science Institute Technical Report # **Stream Corridor Inventory and Assessment Techniques** A guide to site, project and landscape approaches suitable for local conservation programs Prepared by an interdisciplinary and multi-organizational team under the leadership of the Watershed Science Institute (Seattle, Washington), USDA-Natural Resources Conservation Service (NRCS). The institute is composed of an interdisciplinary group of specialists located at university locations throughout the United States. The vision of the Watershed Science Institute is "healthy watersheds and sustainable landscapes." Additional information can be obtained at http://www.geology.washington.edu/~nrcs-wsi. ### **Contents:** Introduction 3 **Stream corridors** extent, function and values Dynamic equilibrium **Cumulative effects of** disturbance The need for stream inventory/assessment information Layout of the guide 4 Acknowledgements 5 **TABLE - Attributes of** stream corridor inventory and assessment techniques **SUMMARIES** -13 **Individual techniques** Figure 1. A variety of notable site-level inventory and assessment techniques have been developed and perfected over recent years to help address the conservation and management of stream corridors. Stream corridors and the water flowing through them are critical elements of the landscape and key indicators of watershed condition. Figure 2. Some stream corridor inventory and assessment techniques (examples shown above) have been developed to be applied with remote sensing (satellite imagery and aerial photographs). Notwithstanding, the data and results of site-level techniques can always be aggregated to landscape and watershed levels. The United States Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, and marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326W, Whitten Building, 14th & Independence Ave., SW. Washington, D.C., 20250-9410 or call (202) 720-5964 (voice or TDD). USDA is an equal opportunity provider and employer. ### Introduction The purpose of this guide is to help land managers, landowners and stakeholders find appropriate inventory and assessment techniques to answer questions about their stream corridor conditions. This guide provides the titles, reference citations, a descriptive summary and attributes of notable stream corridor inventory and assessment techniques that are suitable for local conservation programs. Such programs are typically pursued at the site or project level with increasing attention being given to the landscape scale to optimize future treatments, management and monitoring. ## Stream corridors - extent, function and values The United States has more than 3.5 million miles of rivers and streams. Associated with these are riparian and wetland areas that are important for their economic, social, cultural and environmental values. These water courses and areas are complex, multi-dimensional ecosystems that perform a number of functions such as water storage, energy dissipation, sediment trapping, and water temperature moderation as well as providing important habitat. Stream corridors also have soil characteristics and vegetation distinctly different from the surrounding uplands. They support a greater diversity and abundance of species and rate of productivity than other ecosystems. ### **Dynamic equilibrium** Streams and stream corridors respond in concert with and in response to surrounding ecosystems. Changes in the watershed can impact the physical, chemical, and biological processes occurring within a stream corridor. Stream systems function within natural ranges of flow, sediment movement, and other variables, in what is called "dynamic equilibrium." A natural channel migrates laterally by erosion of one bank, maintaining on the average a constant channel cross section by deposition on the opposite bank. There is a dynamic equilibrium between erosion and deposition. The form of the channel cross-section is stable (i.e., more or less constant), but the position of the channel within its valley is not (Leopold 1994). ### **Cumulative effects of disturbance** When conditions in the surrounding watershed are altered to the degree that dynamic equilibrium is disturbed, a series of adjustments to the stream corridor will ensue. Over time, when conditions in the watershed stabilize, a new dynamic equilibrium will develop in the stream corridor (USDA-NRCS 1999). Human activities have contributed to changes in the dynamic equilibrium of stream systems across the nation. The cumulative effects of these activities has resulted in significant changes, not only to stream corridors, but also to the ecosystems of which they are a part. These changes include degradation of water quality, decreased water storage and conveyance capacity, loss of habitat for fish and wildlife, and decreased recreational and aesthetic values (National Research Council 1992). According to the 1996 National Water Quality Inventory of 693,905 miles of rivers and streams, approximately 40 percent were impaired. Siltation, nutrients, and pathogens were the most common causes of degradation (U.S. EPA 1998) # The need for stream corridor inventories and assessments Given the current condition of rivers and the heightened public interest in them, there is a significant need for the ability to determine the health of streams. The current stability and functionality of the stream is an important consideration that should be addressed at the start of a restoration project. Trying to impose a restoration strategy on a situation that is currently unstable is generally impractical and often costly. The stream corridor inventories and assessments listed in this guide represent a partial catalog of tools currently available for determining conditions of the stream and its associated corridor. The information will assist local watershed groups in developing goals and formulating plans. These tools are also useful at the site scale and to establish base line conditions and evaluate cause-and-effect relationships. ### Literature cited Leopold, Luna B. 1994. *A view of the river*. Harvard University Press, Cambridge, MA. National Research Council (NRC). 1992. Restoration of aquatic ecosystems: science, technology, and public policy. National Academy Press, Washington, DC. United States Environmental Protection Agency (USEPA). 1998. *National water quality inventory: 1996 report to Congress.* EPA841-R-97-008. U.S. EPA Office of Water, Wash., DC. USDA-NRCS. 1999, Personal communication - Intermountain Riparian/Wetland Resource Technical Team. USDA - Natural Resources Conservation Service, Bozeman, MT. ### The layout of the guide The accompanying table, "Attributes of Stream Corridor Inventory and Assessment Techniques," is the core of the guide and provides an overview description of individual techniques. Techniques are grouped by the primary stream corridor setting to which they pertain and are arranged in alphabetical order. Standard dictionary definitions for terms are assumed unless otherwise noted. Explanations of attribute ratings (columns 1-6 of the table) are: - 1. The *Primary Setting* that the particular technique addresses (note: many techniques are used for additional primary or secondary settings): - Channel-floodplain - Riparian area - Water quality (properties; contaminants) - Aquatic habitat ### 2. The *Sampling Intensity*: - Cursory (preliminary, i.e., observations and estimates of conditions and attributes are made usually without the need for specific measurements or quantification) - Detailed (comprehensive, i.e., conditions and attributes are itemized and specifically measured) - 3. The required *Skill Level, Training* and *Time* to properly carry out the technique, each rated as *High* (*Skill level: specialists with considerable specialized expertise; Training: 3-5 days; Time: generally 4 or more hours per site), Medium* (*Skill level: specialists with basic specialized expertise; Training: 1-3 days; Time: generally 1-3 hours per site*), or *Low* (*Skill level: professionals or technicians trained in the technique; Training: 1 day or less; Time: usually less than 1 hour per site*) - 4. The technique's classification as to *Kind*(Inventory a collection of data or Assessment a collection of data and value judgement as to condition), Measure Type (Qualitative using charts, tables, attribute groupings or illustrations to classify or rate, or Quantitative measurements, dimensions, quantities) and Proximity (Onsite observers or data collectors physically at the site, or Remote observers or data collectors can use satellite imagery or aerial photos) - 5. The need for a *Reference Site* (*Yes*, *No* or *Optional*) a reference site is a representative segment or reach of a stream corridor system in dynamic equilibrium with a relatively undisturbed watershed - 6. The technique's Suitability for Monitoring (High suited for statistical analysis with consistent results between different collectors at the same site and accurate detection of change/trend over time, Medium reproducible or repeatable results but generally not suited for statistical analysis, or Low not intended for monitoring purposes) The ratings for the attributes in the table were developed by a team of interdisciplinary specialists (listed in the acknowledgements section below) with experience in stream corridor inventories and
assessments. Another important part of the guide is the section, "Summaries - Individual Techniques," which follows the table. For each technique, a full citation, source address, summary and a copy of the front cover are provided. Techniques are arranged in alphabetical order. Readers are encouraged to obtain and test the techniques that appear promising for the settings and requirements of their local sites and watersheds. If the reference is currently unavailable, contact the NRCS-Watershed Science Institute, c/o GEO SCI, UW, Box 351310, Seattle, WA 98195-1310. ### Acknowledgements The work contained in this document was led and funded by NRCS's Watershed Science Institute. Recognition is given to the many authors of the techniques contained in this report and the team of specialists listed below who collaborated on methods to include, attribute ratings, and summary descriptions. Jenny Adkins, Water Quality Specialist-Biologist, USDA-NRCS, 675 US Courthouse, Nashville, TN 37203 John Brock, Ph.D., Professor, School of Planning and Landscape Architecture, Arizona State University, P.O. Box 872005, Tempe AZ 85287-2005 Michael Burton, Resource Conservationist, USDA-NRCS, 10507 N. McAlister Road, Island City, OR 97850 Dave Denny, Soil Scientist, USDA-NRCS, 3003 North Central Ave., Suite 800, Phoenix, AZ 85012 Robert Drees, Geomorphologist, USDA-NRCS, Riparian Technical Team, 3301 Clinton Parkway Court, Suite 1, Lawrence, KS 66047-2630 Craig Engelhard, Biologist, USDA-NRCS, Riparian Technical Team, 3301 Clinton Parkway Court, Suite 1, Lawrence, KS 66047-2630 Richard Everett, Ph.D., Biologist, U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, 177 Admiral Cochrane Dr., Annapolis, MD 21401 Katheryn Gorichan, Conservationist, USDA-NRCS, 1106 East Eighth St., Merrill, WI 54452-1113 Robert Leinard, Plant Ecologist, USDA-NRCS, Federal Bldg, Rm 443, 10 E. Babcock St., Bozeman, MT 59715 Mitch Michaud, Forester, USDA-NRCS, 110 Trading Bay, Suite 160, P.O. Box 800, Kenai, AK 99611 Marcus Miller, Wetland Biologist, USDA-NRCS, Federal Bldg, Rm 443, 10 E. Babcock St., Bozeman, MT 59715 Kathryn Staley, Fish Biologist, USDA-NRCS, Wildlife Habitat Management Institute, c/o Oregon State University,104 Nash Hall, Corvallis, OR 97331-3809 Al Todd, Chesapeake Bay Program Liaison, USFS/EPA, 410 Severn Ave., Suite 109, Annapolis, MD 21403 Lyn Townsend*, Forest Ecologist, USDA-NRCS, Watershed Science Institute, c/o GEO SCI, UW, Box 351310, Seattle, WA 98195-1310 Special recognition for administrative and technical support is given to: Carolyn Adams, Director, USDA-NRCS, Watershed Science Institute, c/o GEO SCI, UW, Box 351310, Seattle, WA 98195-1310 *Team Leader Table. Attributes of Stream Corridor Inventory and Assessment Techniques. | Column notes listed below > | 1 | 2 | 3 | 4 | 5 | 6 | |--|--------------------------------------|-----------------------|-----------------------------------|-------------------------------------|--------------------------|-------------------------------| | Technique (to obtain a technique's citation and summary, turn to the page number listed in parentheses) | Primary
Setting
(listed first) | Sampling
Intensity | Skill Level,
Training,
Time | Kind,
Measure Type,
Proximity | Reference Site
Needed | Suitability for
Monitoring | | Primary Setting - Channel-floodplain | | | | | | | | Applied River Morphology. Wildland Hydrology
Consultants, 1996. D. Rosgen, Pagosa Springs, CO (14) | С | D | M/L-H-
H | I/A-N-O | Y | M | | Channel-Reach Morphology in Mountain Drainage
Basins. Geological Society of America Bulletin, 1997.
D.R. Montgomery and J.M. Buffington, University of
Washington, Seattle, WA (14) | С | С | M-M-M | I-L-O | O | M/H | | Incised Channels - Morphology, Dynamics and Control. S.A. Schumm, M.D. Harvey, and C.C. Watson, 1984. Littleton, CO (16) | С | С | M-M-L | I-L-O | N | M | | Procedures for Using [the] Oregon Stream Habitat
Data Sheet. USDA-NRCS, 1998. Portland, OR (19) | C,R,A | D | M-M-L | I/A-L/N-O | N | M | | Rapid Stream Assessment Protocol (RSAT) Field
Methods - Appendix A. J. Galli, Sr., 1996. Dept. of
Environmental Programs, Metropolitan Washington
Council of Governments, Washington, DC (21) | C,R,W,A | С | M-M-L | A-L-O | Y | L | | Stream Channel Reference Sites: An Illustrated
Guide to Field Technique. USDA Forest Service,
1994. Ft. Collins, CO (26) | С | D | Н-Н-Н | I-N-O | Y | Н | | Stream Corridor Assessment - Draft Survey
Protocols . K. Yetman, Maryland Department of Natural
Resources, 1999. Annapolis, MD (26) | C,R,A | С | M-M-L | I/A-L-O | N | L | | Stream Inventory Handbook - Level I and II. USDA Forest Service, 1996. Version 9.6. Portland, OR (27) | C,R,A | D | М-М-Н | I-N-O | О | Н | | Streamkeeper's Field Guide - Watershed Inventory
and Stream Monitoring Methods. The Adopt-A-
Stream Foundation, 1996. Everett, WA (27) | C,R,A,W | D | M-M-M | I/A-L/N-O | Y | M/H | | Stream Visual Assessment Protocol. USDA Natural Resources Cons. Service, 1998. Portland, OR (28) | C,R,W,A | C | M-M-L | A-L-O | N | L | - 1) Primary Setting (listed first): $\underline{\mathbf{C}}$ hannel-floodplain, $\underline{\mathbf{R}}$ iparian area, $\underline{\mathbf{W}}$ ater Quality, $\underline{\mathbf{A}}$ quatic - 2) Sampling Intensity: Cursory, Detailed - 3) Skill Level, Training, Time (each rated as): High, Medium, Low - 4) $\mathit{Kind:}\ \underline{\mathbf{I}}$ nventory, $\underline{\mathbf{A}}$ ssessment; $\mathit{Measure}\ \mathit{Type:}\ \mathsf{Qua}\underline{\mathbf{L}}$ itative, $\mathsf{Qua}\underline{\mathbf{N}}$ titative; $\mathit{Proximity:}\ \underline{\mathbf{O}}$ nsite, $\underline{\mathbf{R}}$ emote - 5) Reference Site Required: $\underline{\mathbf{Y}}$ es, $\underline{\mathbf{N}}$ o, $\underline{\mathbf{O}}$ ptional - 6) Suitability for Monitoring: <u>H</u>igh, <u>M</u>edium, <u>L</u>ow | Column notes listed below .> | 1 | 2 | 3 | 4 | 5 | 6 | |---|--------------------------------------|-----------------------|-----------------------------------|-------------------------------------|--------------------------|-------------------------------| | Technique (to obtain a technique's citation and summary, turn to the page number listed in parentheses) | Primary
Setting
(listed first) | Sampling
Intensity | Skill Level,
Training,
Time | Kind,
Measure Type,
Proximity | Reference Site
Needed | Suitability for
Monitoring | | Primary Setting - Riparian area | | | | | | | | Guidebook for Application of Hydrogeomorphic
Assessments to Riverine Wetlands. U.S. Army Corps
of Engineers, Waterways Exp. Station, 1995.
Washington, DC (15) | R | D | Н-Н-Н | A-L/N-O | Y | M | | Integrated Riparian Evaluation Guide. USDA Forest
Service, 1992. Ogden, UT (16)
(Level II)
(Level III) | R,C,A
R,C,A
R,A | C
D
D | M-M-L
H-H-M
H-H-H | I-L-R
I/A-N-O
I/A-N-O | N
N
N | L
H
H | | Methods for Evaluating Riparian Habitats with
Applications to Management. USDA Forest Service,
1987. Ogden, UT (17) | R,C | D | Н-Н-Н | A-N-O | N | Н | | National Forestry Manual; National Range and
Pasture Handbook - Procedures for completing
Vegetation Field Forms and Ecological Sites. USDA
Natural Resources Conservation Service, Washington,
DC (18) | R | D | М-Н-Н | I-N-O | Y | M | | Preliminary Investigation (PI) for Stream Riparian
Areas. USDA Natural Resources Conservation Service,
Watershed Science Institute, 1996. Seattle, WA (18) | R,C,A,W | С | M-M-L | I-L/N-O | N | L | | Protocols for Classifying, Monitoring, and
Evaluating Stream/Riparian Vegetation on Idaho
Rangeland Streams. Division of Environmental
Quality, 1992. Boise, ID (19) | R | D | Н-Н-Н | I-N-O | N | Н | | Rapid Assessment of Riparian Systems (RARS).
R.D. Ohmart et al., 1998. Arizona Game and Fish
Department, Phoenix, AZ (20) | R,C | D | М-Н-Н | A-N-O/R | Y | M | - 1) Primary Setting (listed first): Channel-floodplain, Riparian area, Water Quality, Aquatic - 2) Sampling Intensity: Cursory, Detailed - 3) Skill Level, Training, Time (each rated as): High, Medium, Low - 4) Kind: Inventory, Assessment; Measure Type: QuaLitative, QuaNtitative; Proximity: Onsite, Remote - 5) Reference Site Required: Yes, No, Optional - 6) Suitability for Monitoring: High, Medium, Low | Column notes listed below > | 1 | 2 | 3 | 4 | 5 | 6 | |--|--------------------------------------|-----------------------|-----------------------------------|-------------------------------------|----------------------------|-------------------------------| | Technique (to obtain a technique's citation and summary, turn to the page number listed in parentheses) | Primary
Setting
(listed first) | Sampling
Intensity | Skill Level,
Training,
Time | Kind,
Measure Type,
Proximity | Reference Site .
Needed | Suitability for
Monitoring | | Primary Setting - Riparian area (con't) | | | | | | | | Riparian Area Management: A User Guide to
Assessing Proper Functioning Condition and the
Supporting Science for Lotic Areas. USDI Bureau of
Land Management, 1998. Denver, CO (22) | R,C | С | M-L-L | A-L-O | Y | L | | Riparian Area Management - Greenline Riparian-
Wetland Monitoring. USDI Bureau of Land
Management, 1993. Denver, CO (22) | R | D | M-M-M | I-N-O | N | Н | |
Riparian Area Management - Inventory and
Monitoring of Riparian Areas. USDI Bureau of Land
Management, 1989. Denver, CO (23) | R | D | M/L-
H/M/L-
H/M/L | I-N-O | N | Н | | Riparian Area Management - Procedures for
Ecological Site Inventory. USDI Bureau of Land
Management, 1992. Denver, CO (23) | R,C | D | Н-Н-Н | I-N-O | Y | L | | Riparian Area Management - Using Aerial
Photographs to Assess Proper Functioning
Condition of Riparian-Wetland Areas. USDI Bureau
of Land Management, 1996. Denver, CO (24) | R,C | С | M-M-L | A-L-R | Y | L | | Riparian Reserve Evaluation Techniques and
Synthesis in Ecosystem Analysis at the Watershed
Scale - Federal Guide for Watershed Analysis,
Section II. Multi-agency, 1995. Portland, OR (24) | R | D | Н-М-Н | A-L-O/R | N | M | | Role of GIS in Selecting Sites for Riparian
Restoration Based on Hydrology and Land Use. Utah
State University, 1997. Logan, UT (25) | R | С | H-M-L | I/A-N-R | Y | M | | RWRP Lotic Health Assessment. University of Montana, 1999. Missoula, MT (25) | R,C | C | M-L-L | A-L-O | N | M | | Technology Policy Paper - Mapping Procedures for
Riparian and Other Small Areas. USDA Natural
Resources Conservation Service. 1997. Wash., DC (29) | R,C | D | H-M-M | I-L/N-O | N | L | - 1) Primary Setting (listed first): Channel-floodplain, Riparian area, W ater Quality, Aquatic - 2) Sampling Intensity: Cursory, Detailed - 3) Skill Level, Training, Time (each rated as): <u>H</u>igh, <u>M</u>edium, <u>L</u>ow 4) Kind: <u>Inventory</u>, <u>Assessment</u>; Measure Type: Qua<u>L</u>itative, Qua<u>N</u>titative; Proximity: <u>Onsite</u>, <u>Remote</u> - 5) Reference Site Required: $\underline{\mathbf{Y}}$ es, $\underline{\mathbf{N}}$ o, $\underline{\mathbf{O}}$ ptional - 6) Suitability for Monitoring: <u>H</u>igh, <u>M</u>edium, <u>L</u>ow | Column notes listed below > | 1 | 2 | 3 | 4 | 5 | 6 | |---|--------------------------------------|-----------------------|-----------------------------------|-------------------------------------|--------------------------|-------------------------------| | Technique (to obtain a technique's citation and summary, turn to the page number listed in parentheses) | Primary
Setting
(listed first) | Sampling
Intensity | Skill Level,
Training,
Time | Kind,
Measure Type,
Proximity | Reference Site
Needed | Suitability for
Monitoring | | Primary Setting - Water quality | | | | | | | | Adopt-a-Stream Shoreline Survey. Massachusetts
Riverways Programs, 1996. Boston, MA (13) | W,C,R,A | С | L-M-M | I/A-L-O | N | L | | Agricultural Water Quality Index. Robert B. Annis
Water Resources Institute, Grand Valley State
University, 1998. Allendale, MI (13) | W,R,C,A | С | M-M-M | A-L-O | N | L | | Monitoring Protocols to Evaluate Water Quality
Effects of Grazing Management on Western
Rangeland Streams. U.S. Environmental Protection
Agency, 19 Seattle, WA (17) | W,A,C,R | D | М-Н-Н | A-N-O | Y | Н | | Stream Temperature Investigations: Field and Analytic Methods (for use with SNTEMP: Stream Network Temperature Model). U.S. Fish and Wildlife Service, 1989. Ft. Collins, CO (28) | W
(tempera-
ture) | D | H-M-M | I-N-O | N | Н | | Water Quality Indicators Guide - Surface Water (Chapter 2 and Appendices A and F). Terrene Institute, 1996. Washington, DC (30) | W | С | M-M-M | A-L-O | N | L | - 1) Primary Setting (listed first): $\underline{\mathbf{C}}$ hannel-floodplain, $\underline{\mathbf{R}}$ iparian area, $\underline{\mathbf{W}}$ ater Quality, $\underline{\mathbf{A}}$ quatic - 2) Sampling Intensity: Cursory, Detailed - 3) Skill Level, Training, Time (each rated as): High, Medium, Low - 4) Kind: Inventory, Assessment; Measure Type: QuaLitative, QuaNtitative; Proximity: Onsite, Remote - 5) Reference Site Required: Yes, No, Optional - 6) Suitability for Monitoring: High, Medium, Low | Column notes listed below > | 1 | 2 | 3 | 4 | 5 | 6 | |--|--------------------------------------|-----------------------|-----------------------------------|-------------------------------------|--------------------------|-------------------------------| | Technique (to obtain a technique's citation and summary, turn to the page number listed in parentheses) | Primary
Setting
(listed first) | Sampling
Intensity | Skill Level,
Training,
Time | Kind,
Measure Type,
Proximity | Reference Site
Needed | Suitability for
Monitoring | | Primary Setting - Aquatic habitat | | | | | | | | Fish and Fish Habitat Standard Inventory
Procedures Handbook (R1/R4 - Northern/
Intermountain Regions). USDA Forest Service, 1997.
Ogden, UT (15) | A,C,W-temp. | D | М-Н-Н | I-L/N-O | О | M | | Qualitative Habitat Evaluation Index [QHEI]:
Rationale, Methods, and Application. State of Ohio
Environmental Protection Agency, 1989. Columbus,
OH (20) | A,W | D | Н-Н-Н | I/A-L/N-O | Y | M | | Rapid Bioassessment Protocols for Use in Wadeable
Streams and Rivers - Periphyton, Benthic
Macroinvertebrates and Fish. U.S. Environmental
Protection Agency, 1999. Washington, DC (21) | A,W,C | D | М-Н-Н | I/A-L/N-O | Y | M | | Underwater Methods for Study of Salmonids in the Intermountain West. USDA Forest Service, Intermountain Research Station, 1994. Ogden, UT (29) | A | D | М-М-Н | I-N-O | О | Н | - 1) Primary Setting (listed first): \underline{C} hannel-floodplain, \underline{R} iparian area, \underline{W} ater Quality, \underline{A} quatic - 2) Sampling Intensity: Cursory, Detailed - 3) Skill Level, Training, Time (each rated as): High, Medium, Low - 4) Kind: Inventory, Assessment; Measure Type: Qua Litative, Qua Ntitative; Proximity: Onsite, Remote - 5) Reference Site Required: Yes, No, Optional - 6) Suitability for Monitoring: High, Medium, Low ### Adopt-a-Stream Shoreline Survey. Massachusetts Riverways Programs, 1996. J.C. Kimball and M. Van Dusen. Depart of Fisheries, Wildlife and Environmental Law Enforcement, 100 Cambridge St., Boston, MA 02202 Summary: The survey's purpose is to help local "stream teams" determine vital signs of a river or stream, report immediate problems to proper authorities, and prioritize both short term and long range work. The water course is divided into reasonably sized segments that can be walked or canoed. Field data sheets include measurement of instream conditions, stream vegetation, streambank and corridor conditions, and presence of observable fish and wildlife species. Other data sheets include a summary sheet for a segment or reach survey, a pipe survey, a bridge survey, and a wetlands survey. ### 62 pages, illustrated Agricultural Water Quality Index. Robert B. Annis Water Resources Institute, 1998. Grand Valley State University, J. Cooper et al, WRI Publication #MR-98-1, One Campus Drive, Allendale, MI 49401 Summary: The Agricultural Water Quality Index (AWQI) is an assessment protocol that is specifically designed to evaluate the relationship between agricultural operations and water quality in agroecosystems. The AWQI is based on a series of assessments which can be examined separately and accumulated into a total score. Individual assessments include "Riparian Zone" metrics (width, completeness, vegetation types, summary), "Stream Channel" metrics (flow status, flow stability, channel sinuosity, channel structure, summary), and, optionally, a "Benthic Macroinvertebrates" metric (population diversity including indicator types). Specific recommendations for land and water management are associated with the ranked levels of individual metrics. Worksheets and scoring tables are provided. ### 75 pages # AGRICULTURAL WATER QUALITY INDEX A project of the Robert B. Annis Water Resources Institute Grand Valley State University Allendale, Michigan Funded by the American Farm Bureau-Foundation for Agriculture 1998 **Applied River Morphology.** Wildland Hydrology Consultants, 1996. D. Rosgen, 1481 Stevens Lake Road, Pagosa Springs, CO 81147 Summary: The guide book includes fundamental principles of river behavior, a hierarchical stream inventory and a classification of natural rivers with illustrations, data summaries and photographs depicting major stream types. The book contains field techniques and forms for: - -Stream classification of a reference reach - -Bank erosion prediction - -Fish habitat structure evaluation - -Sediment relations - -Hydraulics - $\hbox{-}Channel\ stability\ evaluations$ ### 341 pages, illustrated ### **Channel-Reach Morphology in Mountain** **Drainage Basins.** Geological Society of America Bulletin, Volume 109, p. 596-611, 1997. D.R. Montgomery and J.M. Buffington, Department of Geological Sciences; request from the Geological Society of America, P.O. Box 9140, Boulder, CO 80301-9140 **Summary:** A classification of channel-reach morphology in mountain drainage basins synthesizes stream morphologies into seven distinct reach types: colluvial, bedrock, and five alluvial channel types (cascade, step pool, plane bed, pool riffle, and dune ripple). Coupling reach-level channel processes with the spatial arrangement of reach morphologies, their links to hillslope processes, and external forcing by confinement, riparian vegetation, and woody debris defines a process-based framework within which to assess channel condition and response potential in mountain drainage basins. The classification is broadly applicable with its primary advantage of addressing the role of large woody debris. ### 15 pages, illustrated Channel-reach morphology in mountain drainage basins David R. Montgomery* John M. Buffington' Department of Geological Sciences,
University of Washington ### ABSTRACT A classification of charmst-reach two-phology in mountain drainingbasins synthesizes strums memphologies into seven distinct reach typesicollevial, before, and five allevial channel types classicals, step pool, plane bod, pool riffle, and dane rigolei. Coupling reach level channel processes with the spatial arrangement of reach memphologies in their finite to hillshops processes, and external forcing by confinement, riperian vegetation, and woody debris defines a process-based framework within which to assess channel condition and response potential in mountain drainings basiss. Field investigations demonstrate characteristic slong, grain size, shear stress, and roughness ranges for different reach types, observations essensions with our hypothesis that allavial channel morphologies reflect specific roughness configurations adjusted to the relative magnitudes of sediment supply and transport capacity. Sivep allavial characteris (counds and step post) have high ratios of transport capacity to sediment supply, whereas tem-gradient allavial channels pool riffle and dusa ripple; how lower transport capacity to supply ratios and thus exhibit significant and prolonged response to changes in stellment supply and discharge. General differences in the reals of transport capacity to supply between channel types after aggregation of reaches into survey, transport, and response segments, the spatial discibilation of which provides a watershed bevice conceptual model linking reach mouphology and channel processes. These two scales of channel network dessification define a transervork within which to investigate spatial and beruparal gatterns of channel recovers in researches Fish and Fish Habitat Standard Inventory Procedures Handbook (R1/R4 - Northern/ Intermountain Regions). USDA Forest Service, 1997. Intermountain Research Station, 324 25th Street, Ogden, UT 84401 Summary: The handbook describes the standard inventory procedures for collecting fish habitat and salmonid fish species data for streams managed by the Northern Region (R1) and Intermountain Region (R4) of the Forest Service. The inventory defines the structure (pool/riffle, forming features), pattern (sequence and spacing) and dimensions (length, width, depth, area, volume, and so forth) of fish habitat; describes species composition, distribution, and relative abundance of salmonid species; and facilitates the calculation of summary statistics for habitat descriptors. The handbook is illustrated in color and includes data collection forms. ### 73 pages, illustrated ### Guidebook for Application of Hydrogeomorphic Assessments to Riverine Wetlands. U.S. Army Corps of Engineers, Waterways Exp. Station, 1995. Technical Report WRP-DE-11. M. Brinson et al. Washington, DC 20314-1000 **Summary:** The guidebook provides the basis (or template) for applying the hydrogeomorphic (HGM) approach for specific physiographic regions for wetland functional assessment of riverine wetlands in context with the Clean Water Act Section 404 Regulatory Program. The concept of a "reference standard" is used, i.e., conditions exhibited by a group of reference wetlands in a physiographic region that correspond to the highest level of functioning. Fifteen functions are identified for the riverine wetland class and are valuated by an index computed using equations of selected variables from a group of 44 variables. Generic equations, detailed information, and field tally sheets are provided to document functions and develop models for a specific regional riverine subclass. Incised Channels - Morphology, Dynamics and Control. S.A. Schumm, M.D. Harvey, and C.C. Watson, 1984. Water Resources Publications, P.O. Box 2841, Littleton, Co 80161 Summary: The original basis of the document was a report on the geomorphic characteristics of channelized streams in northern Mississippi to determine if their future behavior could be predicted. The publication contains a literature review on incised channels, historical information on subject channels, and discussion of geomorphic evolution of incised channels. The concept of entrenched streams is introduced in chapter 5 of the document including the hypothetical sequence of arroyo evolution. A summary of incised channels is listed in chapter 7 including a discussion of a possible evolutionary sequence. ### 200 pages, illustrated **Integrated Riparian Evaluation Guide (Levels I, II, and III).** USDA Forest Service, 1992. T. Collins, Regional Soil Scientist, et al. Regional Office, Intermountain Region, 324 25th Street, Ogden, UT 84401 Summary: The guide provides an integrated approach for: A) Stratifying and classifying riparian areas according to their natural inherent characteristics, and their respective existing conditions; B) Data collection; C) Evaluation of riparian areas; D) Future development and linkage of a riparian data base; E) Preparation of a written narrative to interpret the data and suggest management applications; F) Providing a process to prioritize or rank riparian areas based on management objectives; *G)* Strengthening the riparian management implications of the Forest Land Management Plan. The approach is split into threes levels: level I is an office procedure, level II is a field procedure, and level III is a more quantitative, site-specific field data collection. Levels are progressive and should be completed in order. The guide includes data collection forms. # **Methods for Evaluating Riparian Habitats** with Applications to Management. USDA Forest Service, 1987. General Technical Report INT-221. Intermountain Research Station, W. Platts et al, 324 25th Street, Ogden, UT 84401 Summary: The report compiles a comprehensive set of methods for resource specialists to use in managing, evaluating and monitoring riparian conditions adjacent to streams, lakes, ponds and reservoirs with an emphasis on streams. Issues of sampling kind and intensity, accuracy and precision are discussed. Detailed procedures are given for measuring vegetation, classifying riparian communities and soils, using remote sensing, measuring water column attributes, detecting streambank morphology and alteration, mapping woody debris, using benthic macroinvertebrates, and evaluating historic riparian habitats. Emphasis is on procedural details rather than reliance on pre-defined data collection forms. ### 177 pages, illustrated ### Monitoring Protocols to Evaluate Water Quality Effects of Grazing Management on Western Rangeland Streams. U.S. Environmental Protection Agency, 1993. Water Division. Region 10, 1200 Sixth Avenue, Seattle, WA 98101 Summary: The document describes a monitoring system to assess grazing impacts on water quality in streams of the western United States. Methods discussed are reportedly easy to use and cost-effective (reduced sampling frequency, limited need for specialized equipment, and limited laboratory analyses). The protocols focus on attributes of the stream channel, stream bank, and streamside vegetation (characteristics are sampled during low flow summer conditions). Methodology requires an interdisciplinary team. Explanatory illustrations and various field data collection forms are included. ### 179 pages, illustrated MONITORING PROTOCOLS TO EVALUATE WATER QUALITY EFFECTS OF GRAZING MANAGEMENT ON WESTERN RANGELAND STREAMS > Idaho Water Resources Research Institute University of Idaho Moscow, Idaho 83843 > > Submitted to U. S. Environmental Protection Agency Washington, D.C. National Forestry Manual; National Range and Pasture Handbook (Procedures for completing Vegetation Field Forms and Ecological Sites.) USDA Natural Resources Conservation Service (NRCS), 1998, 1997. P.O. Box 2890, Washington, DC 20013 **Summary:** The manual and handbook contain detailed procedures for completing vegetation field forms and ecological sites. The National Forestry Manual is applicable to stream riparian areas that are currently forested or have a potential for a plant community dominated by woody plants (trees) with a height potential of at least 4 meters. The National Range and Pasture Handbook is applicable to stream riparian areas that are currently in herbaceous or shrub vegetation or have a potential for a plant community dominated by herbaceous or shrub species. Detailed instructions, coding conventions and data collection forms are provided in both the manual and handbook. Collected field data and information may be entered into a national database maintained and supported by the NRCS. ### 100+ pages each, illustrated To wid have been a second of sec National Range and Pasture Handbook > Rendive/fidings/felacs': pre-wa.accusy one-cast fundive ### Preliminary Investigation (PI) for Stream Riparian **Areas.** USDA Natural Resources Conservation Service, Watershed Science Institute, 1996. c/o GEO SCI, Box 351310, UW, Seattle, WA 98195-1310 Summary: This technique is a single page form that permits the user to record major attributes of a representative segment of a stream reach. It was developed for use with private landowners to focus attention on the existing conditions of their streams. Basic stream attributes (e.g., stream order, depth, width, gradient, entrenchment), soil conditions (e.g., bank erosion frequency, bedload fine sediments, upper bank compaction), water conditions (e.g., turbidity, presence of algae, color, temperature), plants (e.g., potential native vegetation, present vegetation, dominant terrestrial plants, aquatic species), air condition, animals (e.g., fish species, aquatic macroinvertebrates, land species), and human use attributes are collected. ### 2 pages # Preliminary Investigation (PI) for Stream Riparius Areas | J. UUDer Louisson, longer harre | Descript or r | | | |
--|---|-------------------|--|---------------------| | 3. Record Estrates some occu- | MMC | Order A | Chipth-ft. + | the way or | | HER JACK JAMES LIFTER THATO | SIMIL | 10001-75.1 | CHOOSE F- | LITE, LI POP | | 4. National Park Statility | Begin: | 7897 | INCOM | 60.0 | | 6. Adjacent tand thelp) | LUC | | 10000 | | | 0.1290USE() in Utalic bries | List | | | | | S. SOLASZATED | 1 | Same and stone | - | nie w mie 130 wagen | | 1. Bark Draion | COCHERCOS: | Thirty/Clinibia's | Charter | frequent | | | And Overwit | COM | 100,000 | 660 | | 2. Concentration Halls | Occupancy: | CRISS/CRISS C | CARPER | erespect | | | and Degree: | CIW | 10000 | HOD | | J. Suptace Lase of | Commence | ALBERT HINE I. | CHEMIS | National. | | 4. package into beginning 5 | Siffer fame ! | | | of sovered by N | | 5. LOS (SES IN CHAPTER), M. L. | Supract | CARE | 150/5/6 | 660 | | C W075R /Dec: andural Tubility | Bayran | Law | Mercuran construction of the t | Web | | 1. National
2. Addise | Bapter | CHE | 18/20 | Me | | J. Distr | 195 | Late. | | - tale | | 5. Tarres struk sam auguste tier | 765 | | | | | 5. High Hillian Har sprache control | | | | | | 3. righ from the savenesses | etie Garage | | | | | C. D. H. H. Staff of Ping at a resident | Complete a Day | | | | | AMENICAL PROPERTY AND ADDRESS OF THE PARTY ADDRESS OF THE PARTY AND ADD | HOPESMIANC | | | | | V. ROCCHITTERFOLD LONGS INC. | Satir | | | | | E-E-70EE | | ilio-nara a | | sensous and the | | D.A.4978 | | | des a sprawat e p | | | 1. Potential Native Wegetation | CHORAGON AND AND AND AND AND AND AND AND AND AN | Fremet: | Sature rer | There | | 2. Wedelf regulative Cover | Charles and An | HARAMOS. | A MARKETIAL | TRUSH. | | J. Species Unwrite | his officer | 2.71 | 471 | 1-3 | | 4 TOO NAME STREET, | Essect. | | | | MCS, Name and stone but on Procedures for Using [the] Oregon Stream Habitat Data Sheet. USDA Natural Resources Conservation Service, 1998. Biology Technical Note No. 12, 101 SW Main Street, Suite 1300, Portland, OR 97204-3221 Summary: The assessment procedure can be used on a broad reach or site-specific scale. Values that are entered on the data sheet can be estimated or measured. The intended use is for planning, baseline data, monitoring, and evaluating restoration alternatives. The procedure is not intended to replace intensive surveys conducted by professional biologists. Users of the procedure are encouraged to complete the watershed overview sheet before the habitat data sheet. The data sheet accommodates entries to identify the site, substrate composition, and bank vegetation. A series of criteria tables are used to assess and score stream habitat condition. # TECHNICAL NOTES UN SUPPLIES OF ADEAL MOTE NO. 12 DECLOSORY TECHNICAL MOTE NO. 12 FROCCIDINES FOR UNITED CREEGON STREAM HABITAT DATA SHEET INTEGRALIANT CONTROL MOTE NO. 12 FROCCIDINES FOR UNITED CREEGON STREAM HABITAT DATA SHEET Introduction. Purpose: To assume remove contribut complications for use to planning, baseline data, manufacing, and afternative evolution. This procedure to use a setumble to organize intensive streamy conducted by preferenced histograms, and afternative evolution. This method was developed with the cooperations flows appray restracts performanced histogram that make the setumber of intensive intensive streamy methods seed field tested extensively with field level planning towards measure planners. This severiney methods seed field tested extensively with field level planning towards measure planners. This severiney methods seed field tested extensive basis is accommented procedure ones be used on a heard result or sine-especific mode. The values can be satisfacted or reasonable desiration. This stream habitat seconament procedure can be used on a heard result or sine-especific mode. The values can be satisfacted or reasonable desiration towards of firest and control organized or specific hadren and some fire that organized results and the second planning of the baselings invocatory date or proposit measurement. Before date categories may not apply to portionize second planning or you be influentation model for analycidy-time. The dates and formed our measurement appraising resultations and one to variables most often evolution by the resultance and any the first analycidy-time and the second planning of the portionized description which fight approximation to the variables most often evolution by the first specific source and any the first standing of the survey, contact the focal ODEW office. The best time of year to assume a stream where first are destrained on the instruction of year to assume a stream where first are destrained on the conduction of year to assume a stream whe Protocols for Classifying, Monitoring, and Evaluating Stream/Riparian Vegetation on Idaho Rangeland Streams. Division of Environmental Quality, 1992. Report No. 8. Idaho Department of Health and Welfare, E. Cowley. 1410 North Hilton, Boise, ID 83720-9000 Summary: The document defines protocols and procedures for evaluating streamside vegetation and streambank stability for Idaho's small (usually less than 30 feet wide) rangeland streams. It also provides protocols for monitoring stream canopy cover, streambank stability, solar input, and establishing permanent photo points associated with livestock grazing and other activities that affect streamside vegetation and beneficial uses of water. The protocols are directed at 3 important pollutant sources affecting the biological integrity of streams and lakes that may result from livestock grazing: 1) streambank erosion, 2) water temperature, and 3) vegetation. Qualitative Habitat Evaluation Index [QHEI]: Rationale, Methods, and Application. State of Ohio Environmental Protection Agency, 1989. Edward T. Rankin, Ecological Assessment Section, P.O. Box 1049, 1800 WaterMark Dr., Columbus, OH
43266-0149 **Summary:** The index is designed to provide a measure of habitat generally corresponding to those physical factors that affect fish communities and which are generally important to other aquatic life, such as invertebrates. The field sheet for the QHEI consists of qualitative descriptors that are checked as appropriate. Highest scores are assigned to the habitat parameters that have been shown to be correlated with streams having high biological diversity and integrity, with progressively lower scores assigned to less desirable habitat features. Individual scores are provided for the habitat components of substrate, instream cover, riparian zone and bank erosion, pool/glide quality, riffle/run quality and gradient. A total score of 100 is possible. Rapid Assessment of Riparian Systems (RARS) - Draft Report. R.D. Ohmart et al., 1998. Arizona Game and Fish Department, 2221 W. Greenway Road, Phoenix, AZ 85023 **Summary:** The assessment was developed to have a tool more applicable to streams in Arizona than those currently being used throughout the West. The technique addresses riparian area classification, channel geomorphology, riparian functional analysis procedure, and riparian monitoring with photography. The objective of the developers was to collect quantitative field data to document and defend functional interpretations. The Tonto National Forest approach (Tonto Riparian *Inventory and Monitoring Methods or TRIMM)* was the working model for developing the assessment. The Arizona Game and Fish Department can be contacted for the final report and assessment procedure. # By Robert D. Ohmart, Lewis H. Myers, William L. Graf, Michael Hurley, Douglas M. Green, John H. Brock, and Cirdly D. Zisner Submitted to Artzona Genne and Fish Department. 2221 W. Greenway Ed Phoenix AZ 85023 In fulfillment of: G500078-C June 1998 Rapid Bioassessment Protocols for Use in Wadeable Streams and Rivers - Periphyton, Benthic Macroinvertebrates, and Fish. Second Edition. U.S. Environmental Protection Agency, 1999. Office of Water (4503F), EPA841-B-99-002. J. Plafkin et al, Assessment and Watershed Protection Division, 401 M Street SW, Washington, DC 20460 Summary: The document provides states with a practical technical reference for conducting cost-effective biological assessments of lotic systems. The protocols were designed as inexpensive screening tools to determine if a stream is supporting or not supporting a designated aquatic life use. They may also be appropriate for priority setting, point and nonpoint-source evaluations, use attainability analyses and trend monitoring. Worksheets are included. The protocols must be locally adapted and scaled. Rapid Stream Assessment Protocol (RSAT) Field Methods - Appendix A. J. Galli, Sr., 1996. Dept. of Environmental Programs, Metropolitan Washington Council of Governments, 777 North Capitol St. NE, Washington, DC 20002 **Summary:** The protocol is a synthesis of several techniques with applicability to non-limestone Piedmont streams with drainage areas less than 150 square miles. RSAT employs both a reference stream and an integrated numerical scoring and verbal ranking approach. Evaluation categories include: 1) Channel stability, 2) Channel scouring/sediment deposition, 3) Physical instream habitat, 4) Water quality, 5) Riparian habitat conditions, and 6) Biological indicators (macroinvertebrates). Parameters are measured at approximately 400-foot intervals along the stream. Data is first recorded via field survey sheets and later transferred into a spreadsheet data base. ### 35 pages, illustrated Appendix A Final Technical Memorandum: Rapid Stream Assessment Technique (RSAT) Field Methods Prepared For: Mostgomery County Department of Environmental Protection Division of Water Resources Management Mostgomery County, Maryland Prepared By: John Galli, 5r. Eavironmental Engineer Department of Environmental Programs Metropolitan Washington Council of Governments 777 North Capitol St, NE Washington, DC 20002 July, 1996 Riparian area management: a user guide to assessing proper functioning condition and the supporting science for lotic areas. USDI Bureau of Land Management, 1998. TR 1737-15. P.O. Box 25047, Denver, CO 80225 **Summary:** The guide establishes a method for evaluating the condition of riparian-wetland lotic areas and classifying segments or reaches of streams into Proper Functioning Condition (PFC), Functional-At Risk, Nonfunctional, and Unknown categories. The qualitative, yet science-based process, considers both abiotic and biotic factors as they relate to physical function. A standard checklist of 17 key questions is provided and enables users to determine the functional condition of a stream reach or segment. PFC must be conducted by an interdisciplinary team trained and familiar with the local conditions being assessed. The supporting science and related quantitative methodologies for each of the 17 questions are provided. ### 126 pages, illustrated Riparian Area Management - Greenline Riparian-Wetland Monitoring. USDI Bureau of Land Management, 1993. TR 1737-8. National Applied Resources Sciences Center, P.O. Box 25047, Denver, CO 80225-0047 Summary: The technical reference gives the detailed procedure for the greenline monitoring method. Greenline is a term used to essentially identify nearest-to-stream continuous riparian plant community types using a line intercept transect running parallel to the stream. It is a procedure that is both repeatable for monitoring purposes and a point of reference which minimizes problems associated with changing moisture gradient. Data collection forms are included. (Note: As of the date of this report, the USDA-Forest Service is in the process of updating the "greenline" methodology with plans to republish the technique as a Forest Service technical publication.) Riparian Area Management - Inventory and Monitoring of Riparian Areas. USDI Bureau of Land Management, 1989. TR 1737-3. National Applied Resources Sciences Center, P.O. Box 25047, Denver, CO 80225-0047 Summary: The technical reference contains suggested techniques and procedures for performing an extensive inventory and, if warranted, an intensive inventory. Extensive components include drainage pattern, landform, soils information, channel form and condition, vegetation types and ecological sites, floodplain characteristics and other attributes. Intensive components include detail soil characteristics and properties, channel parameters, vegetation identification and structure, woody species characteristics, and other attributes. A section on monitoring is integrated in the technical reference. Inventory forms are included. ### 79 pages, illustrated **Riparian Area Management - Procedures for Ecological Site Inventory.** USDI Bureau of Land Management, 1992. TR 1737-7. National Applied Resources Sciences Center, P.O. Box 25047, Denver, CO 80225-0047 **Summary:** The technical reference provides detailed field procedures for describing and documenting riparian-wetland ecological sites (potential vegetation) which are a function of and defined by the interaction of soils, climate, hydrology, and vegetation at riparian-wetland sites. The document contains a "Standard Site Field Review Checklist," a "Site Correlation Checklist," a "Standard Site Description," and a completed, sample "Standard Site Description." The technical reference is intended for use with the National Range and Pasture Handbook, the National Forestry Manual and the National Soil Survey Handbook available from the USDA, Natural Resources Conservation Service, P.O. Box 2890, Washington, DC 20013. Riparian Area Management - Using Aerial Photographs to Assess Proper Functioning Condition of Riparian-Wetland Areas. USDI Bureau of Land Management, 1996 (Revised 1999). TR 1737-12. P.O. Box 25047, Denver, CO 80225 Summary: The document provides a procedure for using aerial photography to answer Proper Functioning Condition (PFC) checklist items. It supplements TR1737-15, Riparian area management: A user guide to assessing proper functioning condition and the supporting science for lotic areas. The technical release gives the detailed procedure for gathering existing source material, analyzing equipment needs, defining reaches and areas, interpreting aerial photos, and verifying interpretations in the field. Also included are specific recommendations pertaining to needed aerial photo qualities, photo interpretation examples, and the results of large area case studies in Montana. ### 52 pages, illustrated Riparian Reserve Evaluation Techniques and Synthesis in Ecosystem Analysis at the Watershed Scale - Federal Guide for Watershed Analysis, Section II. Multi-agency, 1995. Version 2.2. Regional Ecosystem Office, P.O. Box 3623, Portland, OR 97208 Summary: This supplement is part of the federal guide developed to help resource managers implement direction in the Record of Decision (ROD) for Amendments to Forest Service and Bureau of Land Management Planning Documents within the range of the Northern Spotted Owl. The ROD requires watershed analysis prior to the final delineation and management of the Riparian Reserve network in a watershed. The riparian analysis process is divided into two levels based on anticipated activities: Level 1 - geared toward small effects along intermittent streams, and Level 2 - addresses larger magnitude effects. Role of GIS in Selecting Sites for Riparian Restoration Based on Hydrology and Land Use. Utah State University, 1997. G. Russell, C. Hawkins, M. O'Neill. Watershed Science Unit, Logan, UT 84322-5250 Summary: The paper describes an approach to initial site selection in the San Luis Rey River watershed in southern California that uses watershed-level information on basin topography and land cover to rank the potential suitability of all sites within a watershed for either preservation or restoration. The approach requires the use of a geographic information system
(GIS) to map relative wetness and land cover within a watershed. Relative potential wetness values were derived from USGS 30-m digital elevation models; land cover was derived from a Landsat scene covering the 1500 km² study area. The paper is illustrated with color diagrams and pictures. ### 13 pages, illustrated ### The Role of GIS in Selecting Sites for Riparian Restoration Based on Hydrology and Land Use Gordon D. Rassell^{1,4} Charles P. Hawkins^{2,5} Michael P. O'Neill⁵ ### Whites Secondard long-term sechaal enterations effects to quive manifestation of hydrology and secondarding land one shring the site selection process. This settler describes an approach to initial site selection to the Sta. Lais Rey Birst materials in sometimes a distance of the selection to the Sta. Lais Rey Birst materials in sometimes Calibration areas related so benth interest and the set of the selection Watenhold Science List, Utah Seer University, Engin, UR select 55% U. In.A. Department of Februaria and Wildfills and Watenhold Science Use, Lital nature University, Engin, UT 4600-55%, U.S.A. Superment of Congapity and Entitle Resources and Watender Manual Congapity and Engineering Local UTAday of Congression (UTA-600). USA. "So whom consumerations should be addressed. E 1997 Transpire Parketer Millionning restauration based on their vertices values filter, are those, and highly key, and prescriber to existing signer are vegetation. Sites with residence on high vertices sidence and exists registrian ever identified on power of presentation sites. Approximately an inverse with which medican to high vertices ever identified as power of the medican to high vertices ever identified to proceeded restoration alone. Approximately 1000 has high? If the local realest sites a popularities of the presence on a restoration. ### Montalia The contract progress of most of their contract progress of the th Defining and defining ordered to almost discussional contention problems, Smith 1900, used for welfactors are a findingly world between terrorised and appetitives of a finding world between terrorised and appetitives of the second state of the second sec There are recently distinctly different classes of worklands. This shady between only on signification of viverelations of workerd overviewness, and does not distinct of the range well and highlights, each an auditor, enhancing, or largestized, as described by Covarella et al. 1989s. Whiles the distinction system, rights or ordinate con- The access of reportion vertical integration effects the conde or many factors. Numerood, objectives of the eferit must be clearly deligibed (rises in a Festi 1996). One we push have been interesting, the time of the selection are addressed. Selection of this with the highest poported the accessful restoration is noticed as a longist supported of the inferior to states memorizating path and result in a support of the protects in other control one goal. The result is under the condition of the control on the condition of the condition of the control on the condition of the condition of the control on the condition of the condition of the control on the condition of condi colonidas Entings Pol. S.No. 45, pp. 59-69: esciosos var **RWRP Lotic Health Assessment.** University of Montana, 1999. W. Thompson et al, Riparian and Wetland Research Program, School of Forestry. Missoula, MT 59812 **Summary:** The assessment is a method for rapidly addressing a lotic site's overall health or condition. It provides a site rating useful for setting management priorities and stratifying riparian sites for remedial action or more rigorous analytical attention. It is intended to serve as a first approximation, or "coarse filter," by which to identify lotic wetlands in need of closer attention so that managers can more efficiently concentrate effort. The term "riparian health" is used to mean the ability of a riparian reach (including the riparian area and its channel) to perform certain functions. These functions include sediment trapping, bank building and maintenance, water storage, aquifer recharge, flow energy dissipation, maintenance of biotic diversity, and primary production. The current version of the assessment and an accompanying detailed lotic inventory procedure can be found at the web site http://www.rwrp.umt.edu. ### 25 pages, illustrated Min 15, 1900 ### WRP LOTIC HEALTH ASSESSMENT (STAND ALONE) CODES AND INSTRUCTIONS These make and instructions are instructed to enough may the (IMEP (Experime and Wathard Research Progress) Lette Hardin Assessment (Standakher) Form for the regard columbies of their translation seed and Asselver-Serie consider the IPEEP Letter, Death Assessment (South-Assess France, with and Recent set of ### BACKGROUND INFORMATION Introduction Lind managers are being solved to suppose or materials lead or partial the financial stock of the first and product or first throughout the Next. There questions that are generally asked short a confined state or 21 Mila to the pasted of the above, cleans or producted stated or content 972 N Mila plant or 22 Mila to the pasted of the above questions of the other stated or stated or 23 Mila to the pasted of the above questions and the stated or the pasted 972 N Mila plant. The pasted of the state of the stated This RNP Letts Automated Stanforwards is neithed for agedly addressing the third question above that a the which coveral health coreditional liprovision covies using under the extragonous growest provision action using under the extragonous growest provision action of the provision of the extragonous growest provision actions of the extragonous growest provision action of the extragonous growest Commission and specific processing and the state of s In the secure and and with pretiume of receivers Merch, Assemble, a world detectative has been made becomes written (Lyco-Hand or a mension for 18 de Harvet, against incorporate, in the contract of them have and fairly and format in the pretium of the first incorporate contracts and mensions of the develop made from these consistent with each sector. She delivering deather made and the contracts of the coll sector. She delivering the contracts and the contract of contra Lake continued: an associated with more, streams, and distangeness. And wetlands, observations in imprison sentants, notices and defined streams and discupling the submired to on question their periodically or continuously carrier floring mater and disorded and another probability amount. Become product periodically or continuously carrier floring mater and disorded and only another artifacts of painting and wet measures on the throughout on the reasonable of the particular or between the particular and the probability of the particular and the particular and the painting of the particular and the particular and the particular and the particular and the painting of the particular and Levelie architects are assessible with still ratio spinors. These workings note in heater and level a distinct channel and foodplain. Periodol one prima served has presented in referentiated backs of each rate a tables, control on problems, inservine, parely, and so ignoris. Other compilers include him, long, set Date correct of COLOMPEREZ Late World Recomment 1 Clock SPSE First Note In Man Rate Rate Resident Stream Channel Reference Sites: An Illustrated Guide to Field Technique. USDA Forest Service, 1994. General Technical Report RM-245. C. Harrelson et al. Rocky Mountain Forest and Range Experiment Station, Ft. Collins, CO Summary: The guide helps users establish permanent reference sites. The minimum procedure consists of: 1) select a site, 2) map the site and location, 3) measure the channel crosssection, 4) survey a longitudinal profile of the channel, 5) measure stream flow, 6) measure bed material, and 7) permanently file the information with the "Vigil" network. The document includes basic surveying techniques and provides guidelines for identifying bankfull indicators and measuring other important stream characteristics. The object is to establish the baseline of existing physical conditions for the stream channel. The guide is amply illustrated with diagrams and black-and-white pictures. ### 61 pages, illustrated **Stream Corridor Assessment - Draft Survey Protocols.** Maryland Department of Natural Resources, 1999. K. Yetman, Watershed Restoration Division, Chesapeake and Coastal Watershed Services, Annapolis, MD 21401. Summary: The survey protocols help users identify environmental problems and prioritize restoration opportunities that exist within Maryland watersheds. The assessment is designed to be done by small teams of welltrained volunteers who walk two or more stream miles per day. Potential environmental problems identified during a survey include channelized stream sections, stream bank erosion, exposed pipes, inadequate stream buffers, fish blockages, trash dumping sites, near stream construction, pipe outfalls, and general conditions of in-stream and riparian habitat. In conjunction with the AmeriCorp program, over 700 miles of Maryland streams have been surveyed using the assessment protocols. This has led to more than \$1 million of restoration work to date. One Maryland county has included the assessment as part of the NPDES permit system for municipal stormwater discharges. 101 pages, illustrated ### STREAM CORRIDOR ASSESSMENT DRAFT SURVEY PROTOCOLS Prepared by Kenneth T. Yetman Watershed Restoration Division Chesapeake and Coastal Watershed Services Maryland Dept. of Natural Resources Annapolis, MD DRAFT **Stream Inventory Handbook - Level I and II.** USDA Forest Service, 1996. Version 9.6. Region 6, P.O. Box 3623, Portland, OR 97208 Summary: The handbook provides standards for a level I (office inventory) and level II (field inventory) of stream systems. The protocol identifies core attributes necessary to evaluate the condition of a stream. It contains instructions and data forms
for stream habitat conditions (flow, water quality, historical land use, valley-channel parameters, streambed substrate, flood prone dimensions, and riparian habitat dimensions). Other data forms are included for inventorying culverts, falls, chutes, dams, marshes, braids, and fish species. ### 76 pages, illustrated # Streamkeeper's Field Guide - Watershed Inventory and Stream Monitoring Methods. The Adopt-A-Stream Foundation, 1996. T. Murdoch, M. Cheo and K. O'Laughlin. 600-128th Street SE, Everett, WA 98208 **Summary:** The guide provides methods for obtaining a holistic picture of a stream's watershed as well as collecting detailed information. The techniques presented in the guide are fairly simple, inexpensive and can be accomplished with readily available equipment. Readers not only learn how to evaluate the physical and biological characteristics of streams using the latest quality control and quality assurance planning techniques, but can also study a chapter devoted to presenting field data to a wide range of audiences. The section called "Streamkeeper Tales" includes inspirational examples of volunteers who have used their field data as the basis for protecting and restoring streams. The active voice of the text and the large number of humorous technical illustrations which are accompanied by poignant editorial cartoons make this book engaging to volunteers and scientists alike. Stream Temperature Investigations: Field and Analytic Methods (for use with SNTEMP: Stream Network Temperature Model). U.S. Fish and Wildlife Service, 1989. Instream Flow Information Paper No. 13. Biological Report 89(17). J. Bartholow, National Ecology Research Center, 2627 Redwing Road, Ft. Collins, CO 80526-2899 Summary: The document provides guidance to the user of the Stream Network Temperature Model (SNTEMP). Planning, executing, and using the results from a stream temperature modeling study are discussed. Details of field data gathering, instrumentation, and data collection priorities are given for the range of stream geometry, meteorology, and hydrology components necessary for the model's application. Each input variable is defined, and its relative data collection effort is approached from the perspective of sensitivity in predicting stream temperatures. Alternative public domain stream and reservoir temperature models and techniques are also described. ### 139 pages, illustrated ### **Stream Visual Assessment Protocol. USDA** Natural Resources Conservation Service, 1998. B. Newton et al., 101 SW Main St., Suite 1600, Portland, OR 97204-3225 Summary: The assessment protocol provides a basic level of stream health evaluation based primarily on physical conditions for a stream reach. It is intended to be conducted with the landowner and incorporates talking points for planners to use during an assessment. Assessment elements, which receive a numerical rating based on observations and some rapid measurements, include: channel condition, hydrologic alteration, riparian zone, bank stability, water appearance, nutrient enrichment, barriers to fish movement, instream fish cover, pools, invertebrate habitat, canopy cover, manure presence, salinity, riffle embeddedness and macroinvertebrates observed. Rating criteria and worksheets are included. The protocol works best if locally modified. ## **Technology Policy Paper - Mapping Procedures for Riparian and Other Small** **Areas.** USDA Natural Resources Conservation Service. 1997. Soil Survey Division, P.O. Box 2890, Washington, DC 20013 Summary: The paper outlines the procedure for mapping riparian and other small areas which were traditionally identified by spot symbols on soil survey maps. Riparian areas are typically very linear and are more difficult to map and display than upland soil polygons. Certain soils, hydrology and vegetation criteria must be met for an area to be identified and mapped as a riparian area. Cartographic procedures for delineating "point" and "line" features are included. Examples of soil map unit descriptions and a sample soils map are provided. ### 12 pages, illustrated TECHNOLOGY POLICY PAPER Mapping Procedures for Riparian and Other Small As June 1997 Interest has increased in recent years to easy and describe the characteristics and properties of small errors on the Insofrance. Due to the scale of mapping these small areas comen to shown as polyspose on one oil survey reaps. To address the need for procedures to reag annuli assess of significance, such as returning smart, the following procedures are adopted for use in conjunctions with not leavely. It should be sented that these proceedures apply to mapping of any small, highly contrasting areas, set just ripurises areas. This includes areas traditionally following the procedure apply. Appropriate changes to the National Soil Survey Handbook (1996 edition) will accommedate these procedures, and will be distributed as soon as possible. This includes modifying the SSURGO digitizing procedures accordingly. ### IMPLEMENTATION: INTELECTION ACTION: These procedures are optional for current ongoing sell surveys. All surveys began from this date forward, will follow these procedures, where mapping of such areas are identified in the Moreomorbium of Understanding for the survey area. ### DESCRIPTION AND CORRELATION PROCEDURES: - 1. If the mapping of small areas is to be included as part of an outgoing self survey, it will be so noted in the Memorandors of Understanding for the servey area. Mapping scale, mapping intensity, recoveres evaluable, and the need for end use of information are to be considered in raising this decision. It is recognized that this procedure may involve mapping these areas more intensely than other areas of the servey. - If these areas consistently occur in conjunction with another larger map seld, they will be literatified as components of the larger map seld. Their setting and characteristics are to be adequately described. If they can set be described as a part of a larger seld, they are identified as expected selds. - 3. Descriptions of some identified as having ripartine value are made by an interdisciplinary transition will investively and describe discreteriories of the various resources present, such as notice, expertation, welfalfer, and bydriving. The characteristics of the time are secured in the null map notic description and any onsociand Ecological Size Descriptions. Templates for Ecological Size Descriptions. Templates for Ecological Size Descriptions. Assistant Femery Manual and the National Range and Pasture Handbook. Other agencies have strains resipiates included in the Nitrational England Size International England Annual England Size International England Annual England Size International Intern - 4. Areas that are too areal to be shown on the maps as polygons at the scale of mapping ass to be shown as point or line floatures. Generic marker and line symbols are used for all point and line finances. Map symbols are attacked to each point or line finances and shown on the maps. # Underwater Methods for Study of Salmonids in the Intermountain West. USDA Forest Service, Intermountain Research Station, 1994. Russell F. Thurow, General Technical Report INT-GTR-307. 324 25th Street, Ogden, UT 84401 Summary: Underwater observation with snorkeling gear is a valuable tool for studying fish populations and assessing how fish use habitat in flowing waters. Precise estimates of fish abundance can be obtained using underwater counts. However, several factors, including the behavior of the target fish species and attributes of the physical habitat (stream size, water clarity, temperature, cover), can bias results. This report was developed to assist biologists in identifying and accounting for potential biases and to encourage a standardized procedure for the use of underwater techniques to survey salmonids in streams. The guide addresses the principal resident and anadromous salmonids found in the Intermountain West (Idaho, Montana, Nevada, Utah, and western Wyoming). Color illustrations and pen-and-ink drawings of target fish are included. ### **Water Quality Indicators Guide - Surface** **Water** (Chapter 2 and Appendices A and F). Terrene Institute, 1996. Second Ed. 1717 K St., Suite 801, Washington, DC 20006-1504 Summary: The guide examines 5 major sources of agriculturally related nonpoint source pollution -- sediment, nutrients, animal waste, pesticides and salts. Field sheets are provided to enable the user to observe and record surface water quality problems and to select appropriate remedial practices. Field sheets are arranged in matrix format with environmental indicators given for each of the 5 major pollutant types. Each indicator is divided into descriptions of the environment from excellent to poor with each description given a weighted numerical ranking. There are 2 types of field sheets: 1) one for receiving waters, and 2) one for the lands that drain into receiving waters.